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A numerical and experimental study has been made of the three-dimensional flow 
and heat transfer by natural convection in a closed, rectangular thermosyphon. At 
low Rayleigh numbers, the flows in the two halves of the cavity remain separate, 
with heat transfer across the mid-height plane occurring only by conduction. At 
increasing Rayleigh numbers, an exchange process of increasing complexity occurs. 
The numerical solutions were used to explore this process and to predict flow patterns 
which were found to resemble closely those observed during previous investigations 
of cylindrical thermosyphons. The results were verified by a flow visualization study. 
Heat-transfer rates are presented and augment previous data for higher values of the 
governing parameters. 

1. Introduction 
A closed thermosyphon is a long cylindrical cavity, often of circular cross-section, 

the walls of the lower half of which are maintained at a higher temperature than the 
walls of the upper half. (In this paper, only stationary, vertical thermosyphons have 
been considered.) These thermal conditions create an unstable stratification near the 
region of the mid-height of the cylinder. In the upper half of the cylinder, the fluid 
moves so that it descends near the walls and ascends near the vertical axis; in the 
lower half, it descends near the axis and ascends near the walls. If the motion is 
sufficiently strong, the downwards flow near the walls of the upper half of the cylinder 
feeds the flow near the axis of the lower half, while the flow near the axis of the upper 
half is fed from the wall layers of the lower half. A complex three-dimensional exchange 
process is thus established in the mid-height region. 

The closed thermosyphon has practical application in the cooling of turbine blades 
(Ogale 1968, an application in which the device is not stationary and vertical) and in 
the preservation of permafrost beneath buildings in ice-bound regions such aa the 
Canadian northland (Larkin 1967). 

Japiske & Winter (1970) and Japiske, Jallouk &Winter (1 971) performed a detailed 
experimental study of a closed thermosyphon with a circular horizontal cross-section. 
In  terms of the Prandtl number, Pr, and a parameter td (=  2Ra/h, where Ra is the 
Rayleigh number based on the diameter of the cross-section and h is the vertical 
aspect ratio), they made the following general observations. 

For td 5 lo7 the exchange process is laminar and consists of individual streams of 
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ascending hot and descending cold fluid crossing the mid-height plane. The number 
of streams increases with tct. For example four streams (two up and two down) were 
observed when tct 1 lo4, six streams when lo5 5 td 5 5 x lo5 and as many as 10 
streams when tct N 1.5 x lo6. Generally the flow is steady for Pr > 90 and unsteady 
for Pr c 20 although as tct increases a tendency for the streams to drift with time 
develops so that a stable steady state exists only for Pr > 90 and tct 5 5 x 105. 

For the stronger laminar flows (tct 2 lo6) heat is transferred across the mid-height 
plane predominantly by convection. For tct > lo7 the flow is turbulent and heat is 
transferred by a mixing process. 

These observations indicate that the flow and heat transfer should be amenable to 
a steady-state laminar numerical analysis for Pr > 90 and 0 Q t, Q 5 x 106. The 
challenge to such an analysis is that the flow field in the thermosyphon is fully three- 
dimensional : it  cannot even be regarded as a perturbation of a two-dimensional flow 
as is, for example, the flow field in the heated cavity studied by Mallinson & de Vahl 
Davis (1977). 

This paper presents the results of such anumerical analysis. To reduce computational 
expenditure, the numerical solutions are for a cavity of square (rather than circular) 
cross-section. These solutions are shown to be in favourable agreement with both the 
Japikse & Winter (1970) and Japikse et al. (1971) experiments and a flow visualization 
study we have made of a square cross-section thermosyphon. Heat-transfer results for 
0 Q tct Q 4 x 105 are presented and augment the existing data of Japiske et al. for 
tct 2 5 x 105.  

2. Mathematical formulation and solution method 
The mathematical formulation of the equations of motion and their method of 

solution have been described previously (Mallinson & de Vahl Davis 1973, 1977). In  
brief, we considered the motion of a fluid in a rectangular box of dimensions L, L and 
hL in the x, y and z directions respectively; the z axis is directed vertically downwards. 
The Boussinesq (1903) approximation was made, and the fluid properties were other- 
wise treated as being constant. The motion was assumed to be laminar and steady. 
The non-dimensional equations for the vector potential q, vorticity [ and temperature 

Pr-l(V x ([ x V)) = - Ra(V x OI) + Vzc, (2) 

where V denotes velocity and I is the unit vector in the z direction; 

Ra = gB(Th - q) L 3 / ~ v  and Pr = v / K  

are the Rayleigh and Prandtl numbers; /3, K and v are the coefficients of volumetric 
expansion, thermal diffusivity and kinematic viscoaity ; L, L2/K and KIL have been 
used as scale factors for length, time and velocity; 8 is related to the dimensional 
temperature T by 8 = (T - q ) / ( T h  - q); g is the gravitational acceleration; and Th 
and T, are the (dimensional) wall temperatures in the lower and upper halves of the 
box respectively. 



Three-dimensional flow in a closed thermsyphon 

Remembering that z is directed downwards, the boundary conditions for O are: 
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O = o  for Z Q  i h - A z ;  (4) 

z - h / 2  + Az 
2AZ 

for Iz-ihl < Az; 8 =  

8 =  1 for z >  i h + A z .  (6) 

The length Az is the mesh interval in the z direction. Equation ( 5 )  limits the thermal 
gradient in the mid-height region of the thermosyphon walls. In reality this limit is 
imposed by the thermal properties of the walls; numerically it is imposed by Az. 
Note that conditions (4) and (6) imply that the z = 0 and z = h boundaries are iso- 
thermal, whereas the experimental cavity used by Japiske and his co-workers (1970, 
197 1 )  had ends that were nearly adiabatic. 

is normal to the boundary and 
that the normal derivative of its normal component is zero. The conditions on 3 are 
that its normal component is zero and each tangential component is given by 

The conditions on q at each boundary are that 

c,, = - a2+s/as2, (7) 

where c8 and y2* are the components of 3 and 9 in the s (tangential) direction. 
A set of finite-difference equations was generated by replacing all the derivatives 

in the governing equations (1)-(3) and the boundary conditions (7) by second-order 
central difference approximations in such a way that conservation was preserved 
(Mallinson BE de Vahl Davis 1973). Transient terms, chosen to speed the approach to 
steady state, were added to these equations and approximated by first-order forward 
differences. The whole system was solved by an alhrnating direction implicit solution 
procedure, the final steady state being the solution of the original equations (1)-(3). 

Initial conditions for each solution were either ‘rest’ conditions, with V = 0 and 
O = 0.5 throughout the fluid, or a previously converged solution. In  either case the 
initial state could be disturbed by adding values, randomly selected from the interval 
(0.25, 0.75), to the central half of the 8 field during the first iteration of the solution 
process. A solution WM considered to be converged when the sums of the absolute 
changes in t, T and 8 normalized by selected values of the appropriate quantities 
were less than This convergence test was augmented by a careful examination of 
solution transients. 

Once a steady-state solution was obtained a Nusselt number Nu, representing heat 
transfer across the mid-height plane, was computed by evaluating 

at  each (i,j) mesh point in the mid-height plane (k = k,,). A double application of 
Simpson’s rule wtw then used to estimate 

Numerical experiments indicated that the solutions were Pr independent if Pr 2 lo2. 
Solutions were obtained for h = 1, 2 and 4 for lo3 < Ra Q 2 x lo6 (or 5 x lo2 < t,, 
< 4 x 105) and are valid for all Pr 2 lo2. 
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Themeshsizesusedwere15x 15x 15forh = 1 , 1 5 ~ 1 5 ~ 2 1 f o r h =  2 a n d l l x l l x 4 1  
for h = 4. A compromise between accuracy and computing cost is always necessary. 
A limited exploration of mesh size effects in this three-dimensional study showed that 
no essential feature of $he flow has been suppressed in the solutions presented here. 
More extensive studies which we have made of the effects of mesh size in two-dimen- 
sional flow suggest that the Nusselt numbers given below will be in error by no more 
than about 6 per cent. 

3. Experimental flow visualization technique 
The experimental investigation was limited to h = 2 and used the square cross- 

section thermosyphon described by Mallinson & Graham (1974). This consisted of a 
box within a box, the inner box forming a 76 x 76 x 152 mm test cavity. The space 
between the two boxes was divided by a spacer at  the plane z = ah to form two water 
jackets which were fed from constant temperature baths, the water flow rate from 
which was sufficient to ensure that the spatial temperature variation of the water in 
the jackets was less than 0.05 K. To retain a maximum degree of visibility, the whole 
apparatus was constructed from Perspex. The walls of the innermost box were kept 
as thin as possible (3mm), subject to strength requirements, to reduce thermal 
gradients and subsequent departures from the ideal ' isothermal ' boundary conditions. 

to 1.25 x 10-2 ma s-1, 

were used as working fluids in the thermosyphon. For 3 < ( Th - T,) < 50 K the acces- 
sible Rayleigh-number range was from 104 to 5 x 106. For the grades of oil used, 

Silicone oils of several viscosity grades, ranging from 5 x 

5 x 109 < Pr Q 106, 

so that the experiments can be compared directly with the numerical solutions. 
The motion of the oil was rendered visible by neutrally buoyant particles which 

were produced from beeswax. The wax waa melted and impregnated with a small 
amount of fluorescent paint pigment which increased the reflectivity of the particles 
and provided some control of their final specific gravity. After solidification the wax 
was ground and sieved to produce particles with diameters in the range 0.2-1 mm. 
Particles were then introduced into a volume of oil and allowed to settle for 24 h 
before the oil was poured into the cavity, thus providing a final selection of neutrally 
buoyant particles. 

The particles were illuminated by a collimated 5 mm thick sheet of light produced 
by a 150 W halogen low-voltage source and a system of lenses and slits. The most 
meaningful pictures were obtained when the sheet was perpendicular to one of the 
co-ordinate axes used in the numerical model. The majority of flow visualization 
photographs are slices in the vertical x or y planes. A limited number of z slices were 
photographed using a mirror placed underneath the thermosyphon. However, poor 
visibility in this direction meant that the auccess rate was relatively low. 

4. Conduction regime (Ra G 1V) 
Whereas Japiske and co-workers (1970, 1971) used tCt to classify their observations 

(which were based on a single aspect ratio of 8), the present numerical results indicate 
that the Rayleigh number is better for delineating the various flow regimes. For 
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Ra 5 lo3 the flow is weak and heat is transferred across the mid-height plane by 
conduction. For Ra > los convection across the mid-height plane makes rtn increasing 
contribution to the heat transfer. 

4.1. Fluid motion 

Although fluid motion occm for any non-zero Rayleigh numbbr, Convection across 
the mid-height plane exists only when the Rayleigh number e x c d s  a critical value, 
Ra,. For 1 < h < 4, the numerical solutions indicate that lo3 < Ra, < 5 x 108. Our 
experiments were limit& to Ra 2 lo4 and could not provide an estimate for Ra,. 

When Ra < Ra, the flow hrts the form illustrated in figure 1 (a) by streamlines in 
the planes x = 0.5 and y = 0.5 of a solution with h = 2 and Ra = lo8. In  these planes 
of symmetry, the flow is two-dimensional and the streamlines close. They appear to 
be part of a flow field that consists of two counter-rotating vortex rings as indicated 
by the vortex lines also shown in figure 1 (a). The vortex lines near the axis of the flow 
are almost circular 

If the cavity had been circular in horizontal cross-section, the flow field would have 
been axisymmetrical and the vortex lines would have been precisely circular in plan. 
However, the fact that the cross-section is square means that the vortex lines are 
distorted; a non-axisymmetric circumferential motion is established, the net effect 
of which is illustrated by the streamline in figures 1 (b) and 1 (c). This streamline was 
traced from a point near the diagonal vertical plane through the origin. It spirals 
inwards, then moves towards the y = 0.5 plane, where it spirals outwards before 
returning to the diagonal plane via the boundary layers. For clarity, this ltwt return 
section has been omitted from figure 1 (c). Each vortex ring is composed of eight dis- 
tinct flow regions bounded by the four vertical planes of symmetry. In  each region 
the flow is completely self-contained and the streamlines are closed within the region. 

plan despite the square cross-section of the cavity. 

4.2. Heat transfer 
For Ra = 0,B satisfies 

we = 0, 

subject to  the boundary conditions (4)-(6). The solution can be written in the form 

e = 0.5+4,++,,+~~,, (11) 

where 4% satisfies (10) and the boundary conditions (4)-(6) on the x = 0 and x = 1 
boundaries but is zero on all other boundaries. & and q5s similarly satisfy (10) and the 
non-homogeneous boundary conditions on the y and z boundaries respectively. 
Series expansions for the 4 's  can then be found, viz. 

sSh Ai,( 1 - y) + sinh A,5 y z - i h  
sin(2i-1)msinh - 1 (2i- l)jsinhhij f h z '  

- A  r ! + ( - 1 ) 5 - 1  
- 7r2j11 j -1  
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P 
(c) 1 

FIGURE 1. Flow in a thermosyphon with h = 2 and Ra = lo8. (a) Streamlines in the 2 = 0.6 
and y = 0.5 planes and vortex rings. (b)  Streamline showing the effect of cavity geometry. (c) 
Plan view of portion of the streamline in (b ) .  

where 

and 
hf, = n2[(2i- l)a+(2j/h)2], A& = (hn/2)*[(2i- 1)8+(2k- I ) % ]  

A, = (2jn&)/h. 

Note that the solution depends on the mesh interval Az, or the assumed thermal gra- 
dient maintained in the walls at the cavity mid-height. Although a solution can be 
found for the case of a perfect discontinuity across the mid-height, the series is not 
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Nu NU 
h Meah she Az (mries) (numerid) 

1 1 6 x 1 6 ~ 1 6  0.07 1 2.98 2-98 
2 16 x 16 x 21 0- 1 2.63 2-51 
4 11 x 11 x41 0.1 2-83 2-64 

TABLE 1. Flux &hates for Ra = 0 (scrim) and Ra = lo' (numerid). 

absolutely convergent throughout the cavity and cannot be manipulated to yield the 
heat flux aa in the following analysis. 

The heat flux across the mid-height plane is given by 

The series in equations (12)-( 14) can be differentiated and integrated, term by term, 
to yield 

This series was evaluated for h = 1, 2 and 4 and the appropriate values of Az. The 
three Nusselt numbers together with those estimated from numerical solutions at  
Ra = lo3 are given in table 1. It is evident from these figures that convection haa a 
negligible effect on the rate of heat transfer for Ra < lo*. 

An interesting observation is that the series solutions show that the effect of h on 
Nu is insignificant for h 2 2. This observation waa also supported by the temperature 
profiles along the vertical axis of the thermosyphon. The central half of the h = 4 
profile was identical with the h = 2 profile. In fact for h 2 2 the series representing 
9, can be neglected and the temperature field is determined entirely by the applied 
central gradient. 

A corollary of this observation is that the toroidal flow is fixed in size for h 3 2. 
Fluid outside Iz- #hl < 1 is essentially stagnant. 

5. Convection regime (Ra > 109) 

(a )  Flow stability 

For Ra > Ru,, fluid crosses the mid-height plane and a convective exchange process 
is established. As observed by Japikse and co-workers (1970, 1971) the number of 
individual streams crossing the mid-height plane increases with Ra. There is a sequence 
of critical Rayleigh numbers at  which the flow field undergoes transitions between 
configurations with Wering numbers of streams. 

A complete investigation of the stability of each flow configuration and a deter- 
mination of every critical Rayleigh number would involve a prohibitive programme 
of numerical experiments. The observations made in this discussion are based on over 
25 converged solutions each of which waa obtained after imposing a disturbance on 

5.1. Fluid motion 
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either zero flow initial conditions or a previously converged solution for different 
parameter values and sometimes even a different flow configuration. The converged 
solutions are augmented by some 20 solution attempts in which the solution either 
failed to reach a steady state (indicating possible temporal instability of the flow) or, 
in the case of high Ra, became numerically unstable (indicating that the mesh was 
not capable of resolving a highly complicated flow configuration). 

For h = 2, solutions were obtained for Ra = 5 x lo3, lo4, 2 x 104, 3 x 104, 4 x 104, 
5 x lo4, 7 x lo4, lo5 and 2 x lo5. Solutions for the other aspect ratios were obtained 
for some of these values and tended to concentrate on those values of Ra where 
transitions occurred for h = 2. 

From these solutions, the following observations were made: 
(i) The critical Rayleigh numbers for the transitions from two to four streams and 

four to six streams are in the ranges (34 -4 )  x 104 and (1-2) x 105 respectively. 
(ii) For Rayleigh numbers within the ranges given in (i) either transitional con- 

figuration could be obtained as a steady solution. Invariably the configuration with 
fewer streams convected more heat than the other configuration when Ra was near 
the lower end of the transition range; t,he opposite occurred when Ra was near the 
higher end. This suggests that the preferred mode of mobion at a given Rayleigh 
number is the one which convects the more heat. 

(iii) For Rayleigh numbers between these critical values and outside the transition 
ranges only one configuration was possible. The boundaries between the streams were 
located, where possible, along the diagonals of the mid-height plane. 

(iv) For Rayleigh numbers such that two configurations were possible, the smaller 
aspect ratios admitted configurations with the boundary between streams located 
parallel to the walls of the thermosyphon. Often it was possible for the solution to 
oscillate slowly between the two types of alignment emulating the drift observed by 
Japikse & Winter (1970). 

These observations were supported by the flow visualization study. When 
Ra 5 3 x 104 a weak but stable flow containing two streams could be generated. When 
3 x 104 < Ra < 5 x 104, the flow field was difficult to stabilize ancl tended to drift. A 
stable four-stream flow could be generated when 5 x 104 5 Ra 5 105, with SIX streams 
appearing when Ra 2 1.5 x lo5. Beyond Ra = 5 x lo5 the flow became unsteady and 
turbulence developed near Ra = 5 x los. 

(b )  Flow structure 

Experimentally the four-stream configuration for 5 x lo4 5 Ra 5 105 was the most 
easily generated and was chosen for detailed analysis. A case study was made of the 
flow in a cavity with Ra = 105 and h = 2. Contour maps of 8 in the planes x = 0-5, 
z = 0.5 and z = 1 are shown in figures 2 (a) ,  2 ( b )  and 2 (c) respectively. The map of 8 
in the plane z = 1 identifies the four streams of fluid crossing the mid-height plane. 
Note the alignment of the boundaries between the streams. Two streams adjacent to 
the y boundaries carry hot fluid upwards and two adjacent to the x boundaries carry 
cold fluid downwards. 

The contour map of 8 in the x = 0.5 plane indicates that in each half of the thermo- 
syphon the temperature along the vertical axis is essentially constant. This fact was 
used by Japikse et al. (1971) to develop a boundary-layer heat-transfer model for 
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FIGURE 2. The temperature distribution in a thermosyphon with Ra = l@, 
in the planee (a) x = 0.5, (b)  z = 0.5 and (0 )  z = 1. 

Ra > 5 x 106, Note, however, that the axial temperature is not representative of the 
bulk temperature of the coalesced streams (figure 2b). 

Japikse et al. (1971) published a sketch of the flow a t  moderate Rayleigh numbers. 
This sketch showed the ascending and descending flows i n  the wall layers being de- 
flected inwards near the mid-height plane. At some region of the cavity circumference, 
one flow would form a coherent stream and at  the same region the opposing flow would 
be deflected back on itself to form avortex. Asimilar diagram was constructed numeric- 
ally by tracing streamlines which pass through points near the boundaries x = 0 and 
y = 1. In figure 3 (which has been hand-processed to remove hidden features) the 
cold fluid descending near the x = 0 boundary crosses the z = 1 plane as a stream and 
the rising hot fluid adjacent to the y = 1 boundary forms a similar stream. The for- 
mation of the vortices observed by Japikse et al. (1971) is clearly indicated. 

The structure of the flow can, to some extent, be revealed by the flow visualization 
slices, which can also be simulated numerically to provide a means of verifying the 
numerical solutions. For a given steady-state solution, streamlines were traced, 
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FIGURE 3. Flow near the walls in a thennosyphon with four streams; Ra = I@. 

numerically, from points positioned at random in the space equivalent to that oc- 
cupied by the 5 mm thick light beam. The streamlines were terminated when either the 
time interval of the photographic exposure was exceeded or the line left the confines 
of the beam. The number of points was chosen so that the simulation had a similar 
density of ‘traces ’ to the photograph. Typically a simulation would contain around 
200 streamlines. The results of simulations for the four-stream flow a t  Ra = 7 x lo4 
are presented in figure 4 for three values of x and in figure 5 for two values of z. 

The agreement between these simulations and the respective experimental visuali- 
zations is typical of that obtained throughout the range of parameter values studied. 
It should be noted that the construction of the experimental thermosyphon is such 
that approximately 5 mm at  each end of the cavity is obscured from the camera. The 
solid white line on each photograph indicates the location of the cavity boundaries 
in the plane of the light beam. 

The x = 0-5 and y = 0.5 planes are symmetry planes for the flow field. The slim at 
x = 0-5 is shown in figure 4 (a, d). The direction of fluid flow is indicated in the photo- 
graph by a marker which was produced by extinguishing the beam for a short period 
immediately before the end of the exposure. The ascending streams near the y boun- 
daries are clearly discernible, as are four centres of rotation. The streamlines in the 
plane do not close; the flow is not two-dimensional. 

The two centres of rotation in the upper half of the plane are those of the vortices 
formed by the deflection upwards of the descending cold fluid adjacent to the y 
boundaries. In the lower half of the plane the fluid rotates as a result of the presence 
of the z = 2 boundary, which forces descending fluid near the vertical axis to feed the 
ascending wall layers. 
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FIGURE 4. Flow visualizations (a, b, c) and numerical simulations (d, e,f)  ; Ra = 7 x 10'. 
(a, d) beam centred on x = 0.5 (At = 5 min) ; (a, e) beam centred on z = 0.25 (At = 2 min) ; 
(c,f)  beam adjacent to the z = 0 boundary (At = 2 min). 

Flow in the plane y = 0.5 is the same as the inverse with respect to z of that in the 
x = 0-5 plane. The various centres of rotations in these symmetry planes belong to 
two stretched vortex rings. The ring in the upper half of the thermosyphon is stretched 
in the y direction; that in the lower half is stretched in the x direction. This is con- 
firmed by the x = 0.25 slice which has cut the upper ring in the direction of stretch. 

Figures 4 (b, e )  illustrate one of the consequences of the use of a relatively thick 
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FIQURE 5. Flow visualizations (a ,  c) and numerical simulations (b, d) ; Ra = 7 x lV. (a ,  b) beam 
centred on z = 1.0 (At  = 5 min) ; (c, d)  beam centred on z = 0.6 (At! = 6 6). 

beam (7 yo of the cavity width): some streamlines appear to cross each other. Such 
streamlines are not coplanar. The use of a thinner beam would have avoided this to  
some extent, but would have led to the appearance of fewer and shorter streamlines 
in the photographs and simulations. The shorter tracks in figures 4(b, e) are due in 
part to the shorter exposure used, but also to the fact that the motion near x = 0.25 
is not predominantly in that plane (as it  is at x = 04), but across the plane, so that 
particles enter and leave the illuminated region during the exposure. 

The slice near the x = 0 wall, figure 4 (c,f), can be compared with figure 3 and shows 
the formation of the stream of descending cold fluid near that boundary. 

The horizontal slice at z = 1, figure 6 (a, b), shows the four streams crossing the 
mid-height plane. Between these streams the fluid moves inwards along the diagonals 
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of the cross-section. This is evidenced by the directional markers on some of the 
traces in figure 5 (a). The slice at z = 0.5 (which plane does not coincide with the rota- 
tional axis of the vortex ring) clearly confirms the shape in horizontal plan of the 
stretched vortex ring in the upper half of the thermosyphon. 

With respect to  the form of the flow field, the photographs and their simulations 
show favourable agreement. A quantitative comparison is difficult since the three- 
dimensionality of the flow means that the particles may not remain illuminated for 
the duration of the exposure. This effect is evident in figure 4 (a) for example, in that 
very few of the traces actually exhibit the directional marker. A smaller time interval 
alleviates this effect but the accuracy of the comparison is adversely affected. 

Despite the limited validity of making a quantitative comparison, one general ares 
of discord between the photographs and the numerical simulations is evident in figure 
4 (c )  and figure 4 (f). The numerical simulation consistently over-estimates the mag- 
nitude of the fluid velocity near the boundaries of the cavity. The streamline tracing 
procedure uses linear interpolation between mesh points: this is clearly in error close 
to a stationary boundary. 

The flow in each quarter of the cavity (delineated by the vertical planes of sym- 
metry) is complex, and many streamlines were traced before an understanding of its 
form was obtained. If a streamline is followed from an arbitrary point, it executes a 
looping pattern between the upper and lower halves of the cavity as it alternates 
between the two stretched vortex rings. Once started in a particular quarter of the 
box, a streamline remains in that quarter. The basic form of the motion is revealed 
by the line in figure 6 which was chosen so that it entered one of the vortices close to 
one of the planes of symmetry. The particular line shown started from the point 
(0~01,0~5001,0-2) which is near the top of the x = 0 boundary and just in the quarter 
cavity (x < 0.6, y > 0.5). It enters the vortex adjacent to that boundary and spirals 
inwards to the centreof rotation, where it changes direction and follows a path towards 
the plane x = 0-6. Near this plane it changes direction and moves out towards the 
y = 1 boundary and ascends into the upper half of the cavity to the centre of the 
vortex adjacent to  that boundary. Fluid in the vortex adjacent to the y = 1 wall and 
in the same quarter of the cavity aa the streamline in figure 6 returns to the vicinity 
of the y = 0.5 plane by a similar path in the upper half of the thermosyphon. 

Similar flow structures exist for the two-stream and six-stream flows. However, it 
is beyond the scope of this discussion to describe them in detail. Experimental verifi- 
cation of these configurations is shown in figure 7. 

Figure 7 (a, b) shows the x = 0.6 slice of a two-stream flow for Ra 21 lo4 in which 
the boundary between the streams is along the x = y diagonal in the z = 1 plane. 
The slice has cut the edges of the ascending hot and descending cold streams which 
are centred near the x = 0, y = 1 and x = 1, y = 0 corners of the mid-height plane 
respectively . 

Figure 7 (c,  d )  shows a similar slice for a six-stream flow. The distribution of the six 
streams is such that one pair of streams is centred on a diagonal of the mid-height 
plane. The other diagonal forms the boundaries between the remaining streams. An 
x = 0.5 or y = 0-5 slice always cuts one ascending and one descending stream. Bearing 
in mind the difference in Rayleigh numbers, the agreement in form is favourable. 
As remarked in $ 5. l (a) ,  the Rayleigh numbers lo5 and 1.65 x lo5 are near a critical 
value when the flow field tends to be unstable. This is reflected by the aaymmetry 
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FIGURE 6. Streamline at Ra = 106 showing the coupling between the planes of symmetry. 

in the positions of the centres of rotation in the photograph. I n  the experiment these 
centres drifted slowly with time. 

5.2.  Heat transfer 
For each numerical solution, equations (8) and (9) were used to evaluate the Nusselt 
number. Plotting Nu against Ra gave a separate curve for each aspect ratio. More- 
over, the data were insufficient to isolate sections of the curve pertaining to  the 
different flow configurations. In  the following correlation the Nusselt numbers for 
those values of Ra a t  which multiple flow configurations exist correspond to  the 
configurations that convect the most heat. 

Japikse et al. (1971) define an alternative Nusselt number, 

NU,, = h, Llk, (17) 

where h, is a film coefficient obtained by averaging the total heat flux over the area 
of the upper half of the vertical walls of the thermosyphon. Clearly 

XU, = Nu/2h.  (18) 

When Ku,is plotted against t,, (=  PRa/h), asin figure 8, theeffect of hisinsignificant, 
to within the probable error of the Nu estimat,es, and for Ra 2 2 x 104. A least-squares 
fit of the data yields 

or 

This correlation is indicated in figure 8. A comparison with the model of Japikse et al. 
(197 1)  is an extrapolation since their model is valid only for tct =- 5 x 105. For tCt = 106 

XU, = 0.035t;f (19) 

*VIA = 0.092h0's Ra0.4. (20) 
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( C )  (a 
FIGURE 7. Flow field at 2 = 0.5. (a) Ra = 9 x 103 (At  = 5 min). (6) Numerical simulation, 
Ra = 10' (two stream flow). (c) Ra = 1.65 x 105 (At = 8 min). ( d )  Numerical simulation, 
Ra = 10s (six stream flow). 
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FIQURE 8. Numerical estimates of Nu, for ter Q 4 x 105. 
A, h = 1; 0, h = 2; m, h = 4. -, equation (19). 

t,, x 104 

equation (19) gives Nu,  = 8.8, whereas an estimate from their figure 6 is Nu, = 7.2. 
Our estimate is 22 yo higher which could be attributed to the fact that the numerical 
model has isothermal ends rather than the adiabatic ends assumed by Japikse et al. 
(1971). 

The data for td < 2 x lo4 are insufficient to determine in detail the dependence of 
Nu,  on h. However, the series solutions for Ra = 0 indicate that Nu is independent 
of h for h 2 2 and the correlation (19) cannot be expected to hold rts Ra + 0.  

6. Conclusions 
A study, both numerical and experimental, hrts been made of the laminar flow in a 

closed thermosyphon of square cross-section. Excellent agreement has been obtained 
between the finite-difference solutions and the experimental visualizations for a flow 
which is not only fully three-dimensional but also exhibits a series of transitions as 
the Rayleigh number is increased. The numerical solutions for a high-Prandtl-number 
fluid have successfully identified a conduction regime with a weak toroidal flow and a 
convection regime in which an increating number of individual streams cross the mid- 
height plane with increasing Ra. Three critical Rayleigh numbers for the transitions 
from toroidal to two-stream flow, two-stream to four-stream flow and four-stream to 
six-stream flow have been estimated. These critical values together with a tendency 
towards temporal instability when Ra is near a critical value were supported by the 
flow visualization study. 

Apart from minor alignment features associated with the shape of the cross-section, 
the present results are in favourable agreement with previous observations for a 
thermosyphon of circular cross-section. 

For Ra < 103, a series expression for the Nusselt number is valid. Numerical esti- 
mates of N u  for lo4 6 Ra < lo5 have been shown to follow a relationship that is 
similar in form to those developed for higher Ra by Japikse et al. (1971). 

The research was supported in part by a grant to one of us (de Vahl Davis) from the 
Australian Research Grants Committee for which the authors are grateful. 
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